- **7.45** ** (a) If you look at the definition (7.95) of A_{jk} , you will see that A_{jk} differs from A_{kj} only in the order of the two terms in the scalar product. Since the scalar product is commutative, these two expressions are equal. - (b) If we consider first the case of just two variables, the sum in question is $$S = \sum_{j,k} A_{jk} v_j v_k = A_{11} v_1^2 + A_{12} v_1 v_2 + A_{21} v_2 v_1 + A_{22} v_2^2$$ = $A_{11} v_1^2 + 2A_{12} v_1 v_2 + A_{22} v_2^2$ where, in the second line, I used the fact that $A_{12} = A_{21}$. Differentiating with respect to v_1 , we find that $\partial S/\partial v_1 = 2A_{11}v_1 + 2A_{12}v_2 = 2\sum_j A_{1j}v_j$, which is the claimed result for i = 1. The case i = 2 works in the same way. If there are n variables, then, before differentiating with respect to v_i , it helps to separate out the terms that depend on v_i from those that do not: $$S = \sum_{j,k} A_{jk} v_j v_k = A_{ii} v_i^2 + \sum_{k \neq i} A_{ik} v_i v_k + \sum_{j \neq i} A_{ji} v_j v_i + \text{terms not involving } v_i$$ $$= A_{ii} v_i^2 + 2 \sum_{j \neq i} A_{ij} v_i v_j + \text{terms not involving } v_i.$$ Here, in passing to the second line, I replaced the dummy index k by j in the sum $\sum_{k\neq i}$, and used the fact that $A_{ji} = A_{ij}$ in the sum $\sum_{j\neq i}$. Differentiating with respect to v_i we find that $$\frac{\partial S}{\partial v_i} = 2A_{ii}v_i + 2\sum_{j \neq i} A_{ij}v_j = 2\sum_j A_{ij}v_j.$$ **7.46** ** (a) A rotation through angle ϵ about the z axis changes the coordinates of particle α thus: $(r_{\alpha}, \theta_{\alpha}, \phi_{\alpha}) \rightarrow (r_{\alpha}, \theta_{\alpha}, \phi_{\alpha} + \epsilon)$. Therefore, the invariance of \mathcal{L} when the whole system undergoes this rotation means that $$\mathcal{L}(r_1,\theta_1,\phi_1+\epsilon,\cdots,r_N,\theta_N,\phi_N+\epsilon)=\mathcal{L}(r_1,\theta_1,\phi_1,\cdots,r_N,\theta_N,\phi_N).$$ By the definition of partial derivatives, the difference between the two sides of this equation is difference = $$\sum_{\alpha} \frac{\partial \mathcal{L}}{\partial \phi_{\alpha}} \epsilon = 0 \implies \sum_{\alpha} \frac{\partial \mathcal{L}}{\partial \phi_{\alpha}} = 0.$$ (xvii) (b) Lagrange's equations tell us that $\partial \mathcal{L}/\partial \phi_{\alpha} = (d/dt)(\partial \mathcal{L}/\partial \phi_{\alpha}) = d\ell_{\alpha z}/dt$. (Recall that $\partial \mathcal{L}/\partial \phi_{\alpha} = \ell_{\alpha z}$, the z component of the angular momentum of particle α .) Therefore the result (xvii) implies that $(d/dt) \sum \ell_{\alpha z} = 0$; that is, the z component of the total angular momentum is constant, $L_z = \sum \ell_{\alpha z} = \text{const.}$ **7.48** ** If $F = F(q_1, \dots, q_n)$, then $dF/dt = \sum_j \dot{q}_j \partial F/\partial q_j$. Therefore, if $\mathcal{L}' = \mathcal{L} + dF/dt$, its derivatives are $$\frac{\partial \mathcal{L}'}{\partial q_i} = \frac{\partial \mathcal{L}}{\partial q_i} + \frac{\partial}{\partial q_i} \frac{dF}{dt} = \frac{\partial \mathcal{L}}{\partial q_i} + \sum_j \frac{\partial^2 F}{\partial q_i \partial q_j} \dot{q}_j$$ (xviii) and $$\frac{\partial \mathcal{L}'}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} + \frac{\partial}{\partial \dot{q}_i} \frac{dF}{dt} = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} + \frac{\partial F}{\partial q_i}$$ SO $$\frac{d}{dt}\frac{\partial \mathcal{L}'}{\partial \dot{q}_i} = \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} + \frac{d}{dt}\frac{\partial F}{\partial q_i} = \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} + \sum_j \frac{\partial^2 F}{\partial q_i \partial q_j} \dot{q}_j. \tag{xix}$$ If you compare the two equations (xviii) and (xix), you will see that the two last terms are identical. Thus if \mathcal{L} satisfies Lagrange's equation, so does \mathcal{L}' , and vice versa. 7.49 ** (a) If $$\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r} = \frac{1}{2}(B_y z - B_z y, B_z x - B_x z, B_x y - B_y x)$$, then $(\nabla \times \mathbf{A})_x = \partial_y A_z - \partial_z A_y = B_x$. (Remember that **B** is uniform and constant.) Since the y and z components work the same way, we conclude that $\mathbf{B} = \nabla \times \mathbf{A}$. In polar coordinates, $\mathbf{B} = B\hat{\mathbf{z}}$ and $\mathbf{r} = \rho\hat{\boldsymbol{\rho}} + z\hat{\mathbf{z}}$, so $$\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r} = \frac{1}{2}B\hat{\mathbf{z}} \times (\rho\hat{\boldsymbol{\rho}} + z\hat{\mathbf{z}}) = \frac{1}{2}B\rho\hat{\boldsymbol{\phi}}$$ since $\hat{\mathbf{z}} \times \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{\phi}}$. (b) Since there is no electric field, V = 0, and since $\dot{\mathbf{r}} = \dot{\rho}\hat{\boldsymbol{\rho}} + \rho\dot{\phi}\hat{\boldsymbol{\phi}} + \dot{z}\hat{\mathbf{z}}$, $$\mathcal{L} = \frac{1}{2}m\dot{\mathbf{r}}^2 + q\dot{\mathbf{r}}\cdot\mathbf{A} = \frac{1}{2}m(\dot{\rho}^2 + \rho^2\dot{\phi}^2 + \dot{z}^2) + \frac{1}{2}qB\rho^2\dot{\phi}.$$ The three Lagrange equations are $$m\ddot{\rho} = m\rho\dot{\phi}^2 + qB\rho\dot{\phi}, \quad \frac{d}{dt}\left(m\rho^2\dot{\phi} + \frac{1}{2}qB\rho^2\right) = 0, \quad \text{and} \quad m\ddot{z} = 0.$$ (c) In any case, the solution of the z equation is $z = z_0 + v_{zo}t$; that is, the particle moves uniformly in the direction of **B**. If $\rho = \text{constant}$, the ρ equation reduces to $m\dot{\phi}^2 + qB\dot{\phi} = 0$. Therefore, either $\dot{\phi} = 0$ (in which case the particle moves straight along a field line) or $\dot{\phi} = -qB/m$. In this second case, the particle moves clockwise around the z axis (assuming q is positive) at the same time it moves in the z direction with constant velocity; this results in the helical motion described in Section 2.7, with angular velocity equal to the cyclotron frequency $\omega = qB/m$. ## $7.50 \star$ The constraint equation is $$f(x,y) = x + y = \text{const.}$$ The Lagrangian is $\mathcal{L} = \frac{1}{2}m_1\dot{x}^2 + \frac{1}{2}m_2\dot{y}^2 + m_2gy$, and the two modified Lagrange equations are $$\frac{\partial \mathcal{L}}{\partial x} + \lambda \frac{\partial f}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}} \implies 0 + \lambda = m_1 \ddot{x}$$ and $$\frac{\partial \mathcal{L}}{\partial y} + \lambda \frac{\partial f}{\partial y} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{y}} \quad \Longrightarrow \quad m_2 g + \lambda = m_2 \ddot{y}.$$ These three equations are easily solved for the three unknowns, \ddot{x} , \ddot{y} , and λ , to give $\ddot{y} = -\ddot{x} = gm_2/(m_1+m_2)$, and $\lambda = -gm_1m_2/(m_1+m_2)$. The constraint force on m_2 (for example) is $F^{\text{cstr}} = \lambda \partial f/\partial y = -gm_1m_2/(m_1+m_2)$, where the minus sign is because the tension in the string acts upward on m_2 , whereas we're measuring y downward. If we wrote down the constraint equation and Newton's second law for the two masses, we would get the same three equations (with λ replaced by minus the tension), so we would naturally get the same solutions. $7.52 \star$ As the string unwinds, it is clear that $x = R\phi$, so the constraint equation is $$f = x - R\phi = 0. (xxi)$$ The Lagrangian is $\mathcal{L} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}I\dot{\phi}^2 + mgx$ and the two modified Lagrange equations are $$\frac{\partial \mathcal{L}}{\partial x} + \lambda \frac{\partial f}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}} \implies mg + \lambda = m\ddot{x}$$ (xxii) and $$\frac{\partial \mathcal{L}}{\partial \dot{\phi}} + \lambda \frac{\partial f}{\partial \dot{\phi}} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}} \implies 0 - \lambda R = I \ddot{\phi}. \tag{xxiii}$$ Solving these three equations we find that $\ddot{x} = gm/(m+I/R^2)$ and $\ddot{\phi} = \ddot{x}/R$. If you write down Newton's second law as applied to the mass and the wheel, you should get two equations with exactly the form of Eqs.(xxii) and Eqs.(xxiii) except that λ is replaced by $-F^{\rm t}$, (minus the tension in the string). Naturally these give the same answer for \ddot{x} and $\ddot{\phi}$. The simplest way to identify λ is to compare the Lagrange equation (xxii) with the Newtonian equation to give $\lambda = -F^{\rm t}$. Since the constraint function is $f = x - R\phi$, we see that $\lambda \partial f/\partial x = -F^{\rm t}$, as it should. On the other hand, $\lambda \partial f/\partial \phi = F^{\rm t}R$, which is the torque on the wheel, as one might have anticipated.