7.45 +* (a) If you look at the definition (7.95) of Aj, you will see that A;; differs from
Ay; only in the order of the two terms in the scalar product. Since the scalar product is
commutative, these two expressions are equal.

(b) If we consider first the case of just two variables, the sum in question is
S= Z Ajvjvp = Ao + Apgvivg + Agvavy + Aggvy’
Ak = A1v? 4+ 24190102 + Asvf

where, in the second line, I used the fact that A5 = Ay,. Differentiating with respect to vy,
we find that 95/0v, = 241101 + 24515 = QEJ. Ay;v;, which is the claimed result for 7 = 1.
The case i = 2 works in the same way.

[f there are n variables, then, before differentiating with respect to v;, it helps to separate
out the terms that depend on v; from those that do not:

S = Z Ajpvjv = Aﬁvf + Z Ag vy + Z Aj;v;v; + terms not involving v;

gk ki g
= Aiv +2 Z A;;v;v; + terms not involving v;.
J#

Here, in passing to the second line, I replaced the dummy index k& by j in the sum Ek#,
and used the fact that A;; = A;; in the sum E#i. Differentiating with respect to v; we find
that

as
c)v = 2A,;v; +2§AUUJ = QZ Aijv; .
E

7.46 xx (a) A rotation through angle € about the 2 axis changes the coordinates of particle
a thus: (r,,0,, 0n) — (T4, 04, 0o +€). Therefore, the invariance of £ when the whole system
undergoes this rotation means that

L(r1,01,¢1+¢€,--,78,0n, 08 +€) = L(r,01,01,- - , TN, 0N, ON).

By the definition of partial derivatives, the difference between the two sides of this equation
is

difference = Z @@a =0 = Z f)@a 0. (xvii)

(b) Lagrange’s equations tell us that OL[0@a = (d/dt)(()ﬁ/d@a) = dl,./dt. (Recall that
OL[0¢pq = L4z, the z component of the angular momentum of particle a.) Therefore the
result (xvii) implies that (d/dt) >  ¢,. = 0:; that is, the z component of the total angular
momentum is constant, L, = > {,, = const.




748 xx If F = F(q,--- ,qn), then dF/dt = Ej 4;0F/0q;. Therefore, if L' = £ + dF/dt,
its derivatives are

d_ﬁ_%+i£_% ZaZ_F (xviii)
dgi O Ogidt  dg ~= D0y, 9
and
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(xix)
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If you compare the two equations (xviii) and (xix), you will see that the two last terms are
identical. Thus if £ satisfies Lagrange’s equation, so does £', and vice versa.

7.49 xx (a) f A = %B & = %(Byz — B.y,B,x — B,z, B,y — Byx), then
(VxAls=04,—8:A,=B,.

(Remember that B is uniform and constant.) Since the y and 2z components work the same
way, we conclude that B = V x A. In polar coordinates, B = Bz and r = pp + 2%, so
A, A=1Bxr=1Bzx (pp+ 22) = 1Bpp
since z X p = ¢@.
(b) Since there is no electric field, V' = 0, and since I = pp + p@qﬁ + 2Z,
L = smi? + qi-A = sm(p* + p2d% + 32) + %quzg:j.

The three Lagrange equations are
e 12 ; d 2 1 2 -
mp = mpo” + qBpo, o (mp ¢+ 3qBp ) =0, and mzZ=

(c) In any case, the solution of the z equation is z = 2, + v.,t; that is, the particle moves
uniformly in the direction of B. If p = constant, the p equation reduces to m¢? + gBé = 0.
Therefore, either ¢ = 0 (in which case the particle moves straight along a field line) or
¢ = —qB/m. In this second case, the particle moves clockwise around the z axis (assuming
q is positive) at the same time it moves in the 2 direction with constant velocity; this results
in the helical motion described in Section 2.7, with angular velocity equal to the cyclotron
freqency w = ¢B/m.

7.50 x The constraint equation is

f(z,y) = x4+ y = const.
The Lagrangian is £ = %mlzi?z — %mgyz + magy, and the two modified Lagrange equations
o oc_of _dot
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and oc  of daoc

=T )\.—f = ——

dy dy  dt dy
These three equations are easily solved for the three unknowns, #, i, and A, to give §j = —i =
gma/(my + ms), and A = —gmyms/(my + msy). The constraint force on msy (for example)
is Fo" = X\Jf /oy = —gmymsy/(my + msy), where the minus sign is because the tension in
the string acts upward on ms, whereas we're measuring y downward. If we wrote down the
constraint equation and Newton’s second law for the two masses, we would get the same
three equations (with A replaced by minus the tension), so we would naturally get the same
solutions.

=  Mag + A = myj.

7.52 % As the string unwinds, it is clear that x = R¢, so the constraint equation is

f=a—Rd=10 (xxi)

The Lagrangian is £ = imi? + 11¢? + mgz and the two modified Lagrange equations are
2 2
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and

oL af dat
B /‘\% = E% = R (xxiii)
Solving these three equations we find that & = gm/(m + I/R?) and é = /R. If you
write down Newton’s second law as applied to the mass and the wheel, you should get two
equations with exactly the form of Eqs.(xxii) and Eqs.(xxiii) except that A is replaced by
—F*, (minus the tension in the string). Naturally these give the same answer for # and
¢. The simplest way to identify A is to compare the Lagrange equation (xxii) with the
Newtonian equation to give A = —F*®. Since the constraint function is f = 2 — R¢, we see
that A0 f/0x = —F*, as it should. On the other hand, A\df/0¢ = F'R, which is the torque
on the wheel, as one might have anticipated.




